Compatible Systems of `-adic Representations of Dimension Two

نویسنده

  • M. Larsen
چکیده

where E`n denotes the group of `-torsion points of E. The Galois group GK = Gal(K̄/K) acts continuously on T` and therefore on V`. In a series of works ([5], [6], [8], [9]), Serre investigated the image, Γ`, of GK in GL(V`). If E has complex multiplication over C, Γ` is contained in a Cartan subgroup of GL(V`) (resp. the normalizer of a Cartan) if K contains (resp. does not contain) the endomorphism ring of E. If E does not admit complex multiplication, Γ` is Zariski-dense in GL(V`) and for all ` 0, Γ` = GL(T`). In [11], an analogous result is proved for compatible systems of 2-dimensional Galois representations arising from elliptic modular forms. Fix a finite set S of primes ofK. For the purposes of this paper, a compatible system of Galois representations, unramified outside S will be a system of continuous representations

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On l-adic representations attached to non-congruence subgroups II

In this paper we extend the results of [9] to two other subgroups of SL2(Z). Let Γ ⊂ SL2(Z) be a subgroup of finite index. In [8] and [9] it is shown how to attach to the space of cusp forms of weight w on Γ (whose dimension we denote by d) a strictly compatible family {ρl} of 2d-dimensional l-adic representations of Gal(Q/K), for a certain number field, mildly generalising the representations ...

متن کامل

Globally analytic $p$-adic representations of the pro--$p$--Iwahori subgroup of $GL(2)$ and base change‎, ‎I‎ : ‎Iwasawa algebras and a base change map

This paper extends to the pro-$p$ Iwahori subgroup of $GL(2)$ over an unramified finite extension of $mathbb{Q}_p$ the presentation of the Iwasawa algebra obtained earlier by the author for the congruence subgroup of level one of $SL(2‎, ‎mathbb{Z}_p)$‎. ‎It then describes a natural base change map between the Iwasawa algebras or more correctly‎, ‎as it turns out‎, ‎between the global distribut...

متن کامل

’ HOMOMORPHISMS OF l - ADIC GALOIS GROUPS AND ABELIAN VARIETIES

Let k be a totally real field, and let A/k be an absolutely irreducible, polarized Abelian variety of odd, prime dimension whose endomorphisms are all defined over k. Then the only strictly compatible families of abstract, absolutely irreducible representations of Gal(k/k) coming from A are tensor products of Tate twists of symmetric powers of two-dimensional λ-adic representations plus field a...

متن کامل

’ HOMOMORPHISMS OF l - ADIC GROUPS AND ABELIAN VARIETIES

Let k be a totally real field, and let A/k be an absolutely irreducible, polarized Abelian variety of odd, prime dimension whose endomorphism rings is non-trivial and is defined over k. Then the only strictly compatible families of abstract, absolutely irreducible representations of Gal(k/k) coming from A are tensor products of Tate twists of symmetric powers of two-dimensional λ-adic represent...

متن کامل

On three-dimensional Galois representations

We give an irreducibility criterion for the Galois images of compatible l-adic systems of Galois representations. We apply this to the l-adic realizations of the van Geemen-Top motive M and prove an analogue of Serre’s theorem for M.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002